Exercise 23

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow a} x=a
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-a|<\delta \quad \text { then } \quad|x-a|<\varepsilon
$$

for all positive ε. Choose $\delta=\varepsilon$. Now, assuming that $|x-a|<\delta$,

$$
\begin{aligned}
|x-a|<\delta & \\
& =\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow a} x=a .
$$

